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Abstract
We construct a bosonic quantum field on a general quantum graph. Consistency
of the construction leads to the calculation of the total scattering matrix of the
graph. This matrix is equivalent to that already proposed using the generalized
star-product approach. We give several examples and show how they generalize
some of the scattering matrices computed in the mathematical or condensed
matter physics literature. Then, we apply the construction for the calculation
of the conductance of graphs, within a small distance approximation. The
consistency of the approximation is proved by direct comparison with the exact
calculation for the ‘tadpole’ graph.

PACS numbers: 02.30.Ik, 11.10.−z, 73.63.Nm

1. Introduction

Quantum graphs have recently been the subject of intense studies, both at the mathematical
level, see e.g. [1–11, 22] and references therein, and for condensed matter physics applications
in wires, see e.g. [12–15] and references therein, or chaos [16]. These graphs appear to be a
very good approximation for the modeling of quasi unidimensional systems, such as quantum
or atomic wires (for a review see e.g. [17, 18]).

In this paper, we show how to construct quantum fields on a general graph, starting
from the knowledge of the scattering matrix at each vertex of this graph. The construction
relies on the RT-algebra formalism and gives a way to compute the total scattering matrix
associated with the graph. This total scattering matrix is equivalent to that constructed using
the generalized star-product framework [4, 6, 22]. Then, we apply the formalism to the explicit
calculation of conductance for Tomonaga–Luttinger models for specific graphs, such as the
tree graph, the loop, the tadpole and the triangle.

This paper consists of two parts. The first one (that contains sections 2, 3, 4
and 5) deals with the formal aspects of the construction. If one assumes the results of
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Figure 1. Star graphs (the arrows indicate the orientation on the edges).

this part, one can directly read the second part (containing sections 6 and 7) that focuses on
explicit calculations and examples.

More specifically, we summarize in section 2 known results [8–10] on quantum field
theory on star graphs. In section 3, we show how to construct a bosonic quantum field on
a graph consisting of two star graphs linked by a single line. The construction is essentially
based on the determination of its total scattering matrix. In section 4, we generalize the
approach to the case where several lines are tied between the two star graphs, and in section 5
we treat the general case of several star graphs linked by several lines. In section 6, we apply
the previous results to the case of scale invariant scattering matrices. This allows us to recover
results obtained both in the mathematical physics literature [6, 4, 22] and in condensed matter
physics [13, 14]. Finally, using the techniques developed in [9, 11], we apply in section 7 our
results to the calculation of conductance on graphs. The calculation is done in a short distance
approximation. In the case of a tadpole graph, we compute the conductance exactly and show
that the approximation is consistent with the exact calculation. An appendix is devoted to the
proofs of the properties used in this paper.

2. Integrable field theory on star graphs

We summarize here the results developed in [8–10] for the construction of an integrable field
theory on a star graph. The algebraic framework needed to define bosonic fields on a star
graph is the RT-algebras [19, 20]. These algebras are a generalization of ZF-algebras, which
themselves are a generalization of oscillator algebras. Indeed, if oscillator algebras are used to
define free fields on, say, an infinite line, ZF-algebras are adapted to define interacting fields
on this line, while RT-algebras take into account the introduction of a defect on this line.

2.1. RT-algebras

We present the RT-algebra for a star graph with n edges consisting of n infinite half-lines (the
edges) originating from the same point (the vertex); see figure 1.

To each edge a = 1, . . . , n, one associates oscillator-like generators
{
aa(p), a

†
a(p)

}
that

deal with the field propagating on the edge. They are gathered in row and line vectors:

A(p) =

⎛⎜⎜⎜⎝
a1(p)

a2(p)

...

an(p)

⎞⎟⎟⎟⎠ and A†(p) = (
a
†
1(p), a

†
2(p), . . . , a†n(p)

)
. (2.1)
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It remains to give the (integrable) boundary condition at the vertex, i.e. the way the field
connects between the different edges. This boundary condition is given by n2 generators
sa1a2(p), gathered in a matrix, the scattering matrix of the vertex:

S(p) =

⎛⎜⎜⎜⎝
s11(p) s12(p) · · · s1n(p)

s21(p) s22(p) · · · s2n(p)

...
. . .

...

sn1(p) sn2(p) · · · snn(p)

⎞⎟⎟⎟⎠ . (2.2)

The RT-algebra is the unital algebra generated by1 {aa(p), a
†
b(p), sab(p), a, b = 1, . . . , n, p ∈

R} submitted to the relations

aa1(p1)aa2(p2) − aa2(p2)aa1(p1) = 0, (2.3)

a†a1
(p1)a

†
a2

(p2) − a†a2
(p2)a

†
a1

(p1) = 0, (2.4)

aa1(p1)a
†
a2

(p2) − a†a2
(p2)aa1(p1) = 2π(δ(p1 − p2)δa1a2 + δ(p1 + p2)sa1a2(p1)) (2.5)

and the boundary condition

A(p) = S(p)A(−p) and A†(p) = A†(−p)S(−p). (2.6)

The RT-algebra admits an anti-automorphism (written for p ∈ R),

aa(p) → a†a(p); a†a(p) → aa(p) and sa1a2(p) → sa2a1(−p), (2.7)

which is identified with the Hermitian conjugation.
There are two consistency relations coming from relation (2.6). For p ∈ R, they read

S(p)S(−p) = I (2.8)

S†(p) = S(−p). (2.9)

One recognizes in (2.9) the Hermitian analycity for scattering matrix S(p). Together with the
consistency relation (2.8), it implies unitarity of the scattering matrix:

S(p)S†(p) = I. (2.10)

Below, we will decompose the scattering matrix into block submatrices:

S(p) =
(

S11(p) S12(p)

S21(p) S22(p)

)
. (2.11)

Within this decomposition, the consistency relation (2.8) recasts into four equations:

S11(p)S11(−p) + S12(p)S21(−p) = I; S11(p)S12(−p) + S12(p)S22(−p) = 0 (2.12)

S21(p)S11(−p) + S22(p)S21(−p) = 0; S22(p)S22(−p) + S21(p)S12(−p) = I. (2.13)

1 Strictly speaking, at the algebraic level, the RT-algebra can be defined for p ∈ C. However, since p is physically
associated with an impulsion, we restrict ourselves to real p’s.
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2.2. The quantum field on the star graph

A massless bosonic field on the star graph is constructed from the RT-algebra generators as

φa(x, t) =
∫ ∞

−∞

dp

2π

1√
2|p|

{
e−i(|p|t−px)aa(p) + ei(|p|t−px)a†a(p)

}
a = 1, 2, . . . , n. (2.14)

In expression (2.14), x � 0 is the distance on edge a on which the field propagates, with origin
at the vertex. Using the relations (2.3)–(2.5) and (2.6), it can be shown that the field φ has
canonical equal time commutation on each edge,[
φa1(x1, 0), φa2(x2, 0)

] = 0 and
[
(∂tφa1)(x1, 0), φa2(x2, 0)

] = −iδa1a2δ(x1 − x2),

x1, x2 > 0, a1, a2 = 1, . . . , n, (2.15)

and obeys the equation of motion,(
∂2
t − ∂2

x

)
φa(x, t) = 0, x > 0, a = 1, 2, . . . , n, (2.16)

and some boundary condition which depends on the form of S(p). When the scattering matrix
takes the form S(p) = −(B + ipC)−1(B − ipC), where B and C are real matrices such that
BCt = CBt , this boundary condition reads

n∑
b=1

(Babφb(0, t) + Cba(∂xφb)(0, t)) = 0, t ∈ R, a = 1, 2, . . . , n. (2.17)

Equation (2.14) corresponds to a planar wave decomposition of the field φa(x, t). We will
call aa(p) the mode (or the oscillator) on edge a (with momentum p).

Choice of the origin on each edge. In the following, we will need to change the origin of
coordinate on some edges. This amounts to changing the form of the scattering matrix. Indeed,
from form (2.14), it is clear that a shift x → x + d is equivalent to the transformation

aa(p) → eipdaa(p) and a†a(p) → e−ipda†a(p). (2.18)

This transformation does not modify the relations (2.3) and (2.4), but it does affect the
scattering matrix in (2.5). For general shifts of x → x + da , on edge a = 1, . . . , n, the
scattering matrix will be changed as follows:

S(p) → W(p)S(p)W(p) with W(p) = diag(eipd1 , . . . , eipdn). (2.19)

Remark that since S(p) obeys the consistency and unitarity relations (2.8)–(2.10), the
transformation (2.19) does not change the properties (2.8)–(2.10) of the scattering matrix.

In the same way, a change of orientation on the edges will correspond to a transformation:
a(p) → a(−p) in the boundary condition.

2.3. Star graphs as building blocks for quantum wires

In the following, we shall construct integrable quantum field theory on a general quantum
wire. It should be clear that the star graphs can be considered as building blocks for such a
general wire, in the same way the single defect on a line underlies the construction for several
defects on the line [21]. In both cases, the above construction applies locally, around each
vertex. The scattering matrices attached to each of the vertices will be called local. They
are part of the quantum graph data. What remains to do is to connect these star graphs, i.e.
identify the field on connecting edges between two star graphs. We will see that this physical
identification is sufficient to determine the ‘internal’ modes (i.e., the generators {aa(p), a

†
a(p)}

of a connecting edge a between two vertices) in terms of the ‘external’ modes. It also allows us
to construct the global scattering matrix that relates the ‘external’ modes

{
ab(p), a

†
b(p)

}
(on

4
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Figure 2. Simple gluing of two vertices (the arrows indicate the orientation of the edge).

external edges) through a relation of type (2.6). This natural identification (which leads to a
purely algebraic calculation) appears to be equivalent to that introduced in [6] in analyzing the
Schrödinger operator on graphs. In both cases, one needs to ‘glue’ star graphs together, either
using a generalized star product [6] or through identification of the bosonic modes propagating
on the connecting edge(s).

3. Simple gluing of two vertices

3.1. General presentation

We consider two star graphs with n and m edges, respectively, that are linked by one edge.
We want to construct the quantum field on this graph. The basic idea is that locally around
each vertex, the bosonic field should be the same as that for the corresponding star graph.
Then, one should connect the two constructions via the connecting edge, where the two fields
should correspond. We call this procedure the ‘gluing’ of the two vertices. It is drawn in
figure 2.

The local S matrices are denoted by

S(p) =

⎛⎜⎝s11(p) . . . s1n(p)

...
...

sn1(p) . . . snn(p)

⎞⎟⎠ and �(p) =

⎛⎜⎝σ11(p) . . . σ1m(p)

...
...

σm1(p) . . . σmm(p)

⎞⎟⎠ .

(3.1)

The line that links the two vertices is denoted by n in S(p) and by 1 in �(p). For each
edge a �= n the origin is chosen to be at the vertex to which the edge belongs. For edge n,
the origin is chosen at the vertex described by S(p), so that S(p) is the ‘true’ local scattering
matrix of the vertex, while �(p) is related to the ‘true’ local scattering matrix �0(p) by

�(p) = W(p)�0(p)W(p) with W(p) = diag(eipdn , 1, 1, . . . , 1), (3.2)

where dn is the distance between the two vertices (measured on edge n).
The boundary conditions on each vertex are local, and hence take the form

Â(p) = S(p)Â(−p) and B̂(p) = �(p)B̂(−p), (3.3)

where

Â(p) =

⎛⎜⎜⎜⎝
a1(p)

a2(p)

...

an(p)

⎞⎟⎟⎟⎠ and B̂(p) =

⎛⎜⎜⎜⎝
an(−p)

an+1(p)

...

an+m−1(p)

⎞⎟⎟⎟⎠ . (3.4)
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Since the mode an(p) is common to A(p) and B(p), one can eliminate it from the system.
In other words, the field on the ‘inner line’ of the graph is constructed from the modes on the
outer lines. In order to do this calculation, we single out an(p),

Â(p) = (
A(p)an(p)

)
and B̂(p) =

(
an(−p)

B(p)

)
, (3.5)

where we have introduced

A(p) =

⎛⎜⎝ a1(p)

...

an−1(p)

⎞⎟⎠ and B(p) =

⎛⎜⎝ an+1(p)

...

an+m−1(p)

⎞⎟⎠ . (3.6)

We apply the same decomposition to matrices S(p) and �(p):

S11(p) =

⎛⎜⎝ s11(p) . . . s1,n−1(p)

...
...

sn−1,1(p) . . . sn−1,n−1(p)

⎞⎟⎠ ; �22(p) =

⎛⎜⎝σ22(p) . . . σ2m(p)

...
...

σm2(p) . . . σmm(p)

⎞⎟⎠
S21(p) = (sn1(p), . . . , sn,n−1(p)); �12(p) = (

σ12(p), . . . , σ1m(p)
)

S12(p) =

⎛⎜⎝ s1n(p)

...

sn−1,n(p)

⎞⎟⎠ ; �21(p) =

⎛⎜⎝σ21(p)

...

σm1(p)

⎞⎟⎠
(3.7)

so that

S(p) =
(

S11(p) S12(p)

S21(p) snn(p)

)
�(p) =

(
σ11(p) �12(p)

�21(p) �22(p)

)
. (3.8)

With these splittings, the boundary conditions (3.3) recast as

A(p) = S11(p)A(−p) + S12(p)an(−p) (3.9)

an(p) = S21(p)A(−p) + snn(p)an(−p) (3.10)

B(p) = �22(p)B(−p) + �21(p)an(p) (3.11)

an(−p) = �12(p)B(−p) + σ11(p)an(p). (3.12)

Equations (3.10) and (3.12) allow us to express an(p) in terms of A(p) and B(p)

an(p) = 1

1 − σ11(p)snn(p)
(S21(p)A(−p) + snn(p)�12(p)B(−p)) (3.13)

together with a consistency relation

S21(p)A(−p) + snn(p)�12(p)B(−p)

= 1 − σ11(p)snn(p)

1 − σ11(−p)snn(−p)
(σ11(−p)S21(−p)A(p) + �12(−p)B(p)). (3.14)

This consistency relation is automatically satisfied if S(p) and �(p) obey the consistency
relation (2.8); see proof in appendix A.1 for a more general case. Then, defining

A(p) =
(

A(p)

B(p)

)
(3.15)

we recast the two remaining relations as

A(p) = Stot(p)A(−p) (3.16)

6
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Figure 3. The tree graph.

with

Stot(p) =

⎛⎜⎜⎝S11(p) +
σ11(p)S12(p)S21(p)

1 − σ11(p)snn(p)

S12(p)�12(p)

1 − σ11(p)snn(p)

�21(p)S21(p)

1 − σ11(p)snn(p)
�22(p) +

snn(p)�21(p)�12(p)

1 − σ11(p)snn(p)

⎞⎟⎟⎠ . (3.17)

One can show that if S(p) and �(p) obey the consistency relation (2.8), then so does Stot(p).
In the same way, the unitarity relation (2.10) for matrices S(p) and �(p) implies unitarity for
the matrix Stot(p).

The bosonic quantum field φa(x, t) keeps the form (2.14). Since the total scattering matrix
obeys relations (2.9) and (2.8), the field φa(x, t) on external edges (a �= n) still obeys relations
(2.15) and (2.16). However, on edge n, one has to replace the generators {an(p), a

†
n(p)} by

their expression (3.13), and it is not ensured that φn(x, t) is canonical.
Remark that the scattering matrix can be rewritten as

Stot(p) =
(

S11(p) 0

0 �22(p)

)
+

1

1 − σ11(p)snn(p)

×
(

σ11(p)S12(p)S21(p) S12(p)�12(p)

�21(p)S21(p) snn(p)�21(p)�12(p)

)
. (3.18)

The first term in (3.18) corresponds to the scattering matrix of the two local vertices without
interaction (i.e., when edge n is removed), while the second term is the ‘perturbation’ due to
the link through an(p). Let us stress that only Stot(p) is unitary.

Remark 3.1. In the limit of a vanishing distance between the vertices, dn → 0, the gluing of
scattering matrices can be viewed as a recursive process to build higher dimensional scattering
matrices, starting from low-dimensional ones. The process ensures unitarity of the final matrix
when the original ones are.

3.2. Example 1: the ‘tree graph’

As an example, we consider the gluing along one edge of the two vertices with three edges.
In this way, we construct the scattering matrix for a vertex with four edges that we call a ‘tree
graph’ for obvious particle physics reasons; see figure 3. This gluing is the simplest example
of the recursive process mentioned in remark 3.1.

The decomposition of the local S matrices reads

S(p) =
⎛⎝s11(p) s12(p) s13(p)

s21(p) s22(p) s23(p)

s31(p) s32(p) s33(p)

⎞⎠ and �(p) =
⎛⎝σ11(p) σ12(p) σ13(p)

σ21(p) σ22(p) σ23(p)

σ31(p) σ32(p) σ33(p)

⎞⎠ ,

(3.19)

7
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where the lines indicate the block decomposition of the matrices. The local boundary
conditions have the form⎛⎝a1(p)

a2(p)

a3(p)

⎞⎠ = S(p)

⎛⎝a1(−p)

a2(−p)

a3(−p)

⎞⎠ and

⎛⎝a3(−p)

a4(p)

a5(p)

⎞⎠ = �(p)

⎛⎝ a3(p)

a4(−p)

a5(−p)

⎞⎠ . (3.20)

We will focus on identical local vertices. This does not mean that local matrices S(p)

and �(p) are identical, because of the different labeling and orientation of the edges on the
total graph, and also because of the choice of the origin on the connecting edge. The local
scattering matrices rather obey

�(p) = W(p)PS(−p)P −1W(p) with

P =
⎛⎝0 0 1

1 0 0
0 1 0

⎞⎠ ; W(p) = diag(eipd, 1, 1), (3.21)

where d is the distance between the two vertices. In (3.21), P rotates the S-matrix according to
the labeling of the edges, while W(p) implements the shift of the origin, according to (2.19).
It leads to

�(p) =
⎛⎝s33(−p) e2ipd s31(−p) eipd s32(−p) eipd

s13(−p) eipd s11(−p) s12(−p)

s23(−p) eipd s21(−p) s22(−p)

⎞⎠ . (3.22)

Using this expression and the consistency relation, one rewrites (3.17) as

Stot(p) =
(

S11(p) 0
0 S11(−p)

)
+

e2ipd

N (p)

(
s33(−p)M(p, p) e−ipdM(p,−p)

e−ipdM(−p, p) s33(p)M(−p,−p)

)
(3.23)

N (p) = 1 − e2ipds33(p)s33(−p),

where we have introduced the submatrix

M(p, q) = S12(p) · S21(q) =
(

s13(p)s31(q) s13(p)s32(q)

s23(p)s31(q) s23(p)s32(q)

)
. (3.24)

The boundary condition for the total tree graph reads⎛⎜⎜⎝
a1(p)

a2(p)

a4(p)

a5(p)

⎞⎟⎟⎠ = Stot(p)

⎛⎜⎜⎝
a1(−p)

a2(−p)

a4(−p)

a5(−p)

⎞⎟⎟⎠ , (3.25)

and the ‘inner mode’ a3(p) is expressed in terms of the ‘outer modes’ as

a3(p) = 1

N (p)
{s31(p)a1(−p) + s32(p)a2(−p)

+ eipds33(p)(s31(−p)a4(−p) + s32(−p)a5(−p))}. (3.26)

4. General gluing of two vertices

We now turn to the case of two vertices linked by r lines, as shown in figure 4.
Following the same techniques as in section 3, it is clear that the construction of the

quantum field on the graph is equivalent to the determination of the total scattering matrix for
the complete graph.

8
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m

Figure 4. General gluing of two vertices.

4.1. General case

As in the previous case, we divide the local S matrices according to the r lines that are common
to the two vertices,

S(p) =
(

S11(p) S12(p)

S21(p) S22(p)

)
; �(p) =

(
�11(p) �12(p)

�21(p) �22(p)

)
, (4.1)

where the block submatrices have sizes n × n, n × r, r × n, r × r in S(p):

S11(p)=

⎛⎜⎝s11(p) . . . s1n(p)

...
...

sn1(p) . . . snn(p)

⎞⎟⎠ S12(p)=

⎛⎜⎝s1,n+1(p) . . . s1,n+r(p)

...
...

sn,n+1(p) . . . sn,n+r(p)

⎞⎟⎠

S21(p)=

⎛⎜⎝sn+1,1(p) . . . sn+1,n(p)

...
...

sn+r,1(p) . . . sn+r,n(p)

⎞⎟⎠ S22(p)=

⎛⎜⎝sn+1,n+1(p) . . . sn+1,n+r(p)

...
...

sn+r,n+1(p) . . . sn+r,n+r(p)

⎞⎟⎠ ,

(4.2)

and sizes m × m,m × r, r × m, r × r in �(p):

�11(p) =

⎛⎜⎝σ11(p) . . . σ1r(p)

...
...

σr1(p) . . . σrr(p)

⎞⎟⎠ �12(p) =

⎛⎜⎝σ1,r+1(p) . . . σ1,m+r(p)

...
...

σr,r+1(p) . . . σr,m+r(p)

⎞⎟⎠

�21(p) =

⎛⎜⎝σr+1,1(p) . . . σr+1,r(p)

...
...

σm+r,1(p) . . . σm+r,r(p)

⎞⎟⎠ �22(p) =

⎛⎜⎝σr+1,r+1(p) . . . σr+1,m+r(p)

...
...

σm+r,r+1(p) . . . σm+r,m+r(p)

⎞⎟⎠ .

(4.3)

Modes Â(p) and B̂(p) on each local vertex are decomposed accordingly,

Â(p) =
(

A1(p)

A2(p)

)
; B̂(p) =

(
A2(−p)

A3(p)

)
, (4.4)

where

A1(p) =

⎛⎜⎝a1(p)

...

an(p)

⎞⎟⎠ ; A2(p) =

⎛⎜⎝an+1(p)

...

an+r(p)

⎞⎟⎠ ; A3(p) =

⎛⎜⎝an+r+1(p)

...

an+m+r(p)

⎞⎟⎠ . (4.5)

9
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The calculation follows the same lines as in section 3 and we get

A(p) = Stot(p)A(−p) with A(p) =
(

A1(p)

A3(p)

)
(4.6)

and

Stot(p)=
(

S11(p) + S12(p)D(p)−1�11(p)S21(p) S12(p)D(p)−1�12(p)

�21(p)D̃(p)−1S21(p) �22(p) + �21(p)D̃(p)−1S22(p)�12(p)

)
,

(4.7)

where

D(p) = Ir − �11(p)S22(p) and D̃(p) = Ir − S22(p)�11(p) (4.8)

is now an r × r matrix supposed to be invertible (which is true for generic values of d; the
distance between the two vertices).

One checks easily that the formulae (4.7) are identical to that given by the star-product
approach; see, e.g., formula (33) in [4] and formula (3.4) in [6]. Matrices D(p)−1 and
D̃(p)−1 in this paper correspond (through a series expansion) to matrices K1 and K2 there,
and the assumption of invertibility of D(p) and D̃(p) is the compatibility condition assumed in
[4, 6]. In the language of [4, 6], we have made the generalized star product S(p) ∗W(p) �(p).

The present approach also allows us to reconstruct the modes in between the two vertices
from those outside:

A2(p) = D̃(p)−1(S21(p)A1(−p) + S22(p)�12(p)A3(−p)). (4.9)

As in section 3, there is an additional consistency relation that is automatically satisfied if
S(p) and �(p) obey the consistency relation (2.8). The proof is given in appendix A.1. In
this case, Stot(p) also obeys this relation. The same is true for the unitarity relation. When we
take r = 1, we recover the case of section 3.

4.2. Case of identical vertices

To simplify the expression of Stot(p) given above, we now focus on identical vertices. As
already mentioned, due to the different labeling of the edges, the orientation of the edges and
the choice of the origin on the connecting edge, the local scattering matrices are not identical,
but rather obey

S(p) =
(

S11(p) S12(p)

S21(p) S22(p)

)
and �(p) =

(
e2ipdS22(−p) eipdS21(−p)

eipdS12(−p) S11(−p)

)
, (4.10)

where we assumed that the distance between the two vertices is d, whatever the connecting
edge on which it is measured. Since the vertices are identical, one has n = m, and S11(p) is a
n × n matrix, while S22(p) is r × r.

Then, using consistency relations (2.12)–(2.13), which in particular implies

S12(p)(In − e2ipdS22(−p)S22(p)) = (In − e2ipdS11(p)S11(−p))S12(p), (4.11)

one can rewrite (4.7) as

Stot(p) =
(

(1 − e2ipd)D1(p)−1S11(p) eipdD1(p)−1(Ir − S11(p)S11(−p)
)

eipdD̃1(p)−1(Ir − S11(−p)S11(p)
)

(1 − e2ipd)D̃1(p)−1S11(−p)

)
,

(4.12)

where

D1(p) = Ir − e2ipdS11(p)S11(−p) and D̃1(p) = Ir − e2ipdS11(−p)S11(p). (4.13)

Remark that the total scattering matrix is built on the block submatrix S11(p) solely.

10



J. Phys. A: Math. Theor. 42 (2009) 295205 E Ragoucy

a1
S(p)

a4

a2

Σ(p)
a3

Figure 5. The loop.

The modes on the inner edges are given by

A2(p) = (In − e2ipdS22(−p)S22(p))−1(S21(p)A1(−p) + eipdS22(p)S21(−p)A3(−p)).

(4.14)

4.3. Approximation for small distance

Taking the limit d → 0, one gets the trivial scattering matrix

Stot(p)|d=0 =
(

0 In

In 0

)
(4.15)

corresponding to n non-connected infinite lines.
Thus, one could think of an expansion of Stot(p) in terms of distance d to get new scattering

matrices. However, the physical data, such as the conductance (see section 7), rely heavily
on the pole structure of the scattering matrix. Hence, before we perform an approximation of
(4.12) for small d, we rewrite it as (for t = tan(pd/2))

Stot(p) =
(

S ′
11(p) S ′

12(p)

S ′
21(p) S ′

22(p)

)
(4.16)

S ′
11(p) = −4itD(p)−1S11(p); S ′

12(p) = (1 + t2)D(p)−1(I − S11(p)S11(−p)) (4.17)

D(p) = (1 − it)2
I − (1 + it)2S11(p)S11(−p) (4.18)

S ′
21(p) = (1 + t2)D̃(p)−1(I − S11(−p)S11(p)); S ′

22(p) = −4itD̃(p)−1S11(−p) (4.19)

D̃(p) = (1 − it)2
I + (1 + it)2S11(−p)S11(p). (4.20)

Then, the approximation is done using the expansion t ∼ pd/2, but keeping the possible
fractions entering the formulae above. We detail in section 6 this expansion for some examples:
it will show how the pole structure is (partially) preserved in such an expansion. In section 7,
we apply this expansion to the calculation of the conductance. In particular, we will show
its consistency by comparing in one example this approximation to the full calculation of the
conductance.

4.4. Example 2: the loop graph

In this case, one considers two vertices with three edges each, two of them being glued together.
The local S-matrices are 3 × 3, and the total S-matrix (after gluing) is 2 × 2. In the notation
of the previous section, we have n = m = 3 and r = 2.

The decomposition of the local S matrices reads

S(p) =
⎛⎝s11(p) s12(p) s13(p)

s21(p) s22(p) s23(p)

s31(p) s32(p) s33(p)

⎞⎠ and �(p) =
⎛⎝σ11(p) σ12(p) σ13(p)

σ21(p) σ22(p) σ23(p)

σ31(p) σ32(p) σ33(p)

⎞⎠ .

(4.21)
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Again, the lines drawn within the matrices indicate the block submatrices we consider. The
local boundary conditions have the form⎛⎝a1(p)

a2(p)

a4(p)

⎞⎠ = S(p)

⎛⎝a1(−p)

a2(−p)

a4(−p)

⎞⎠ and

⎛⎝a2(−p)

a4(−p)

a3(p)

⎞⎠ = �(p)

⎛⎝ a2(p)

a4(p)

a3(−p)

⎞⎠ . (4.22)

We will focus on identical vertices:

�(p) = W(p)P −1S(−p)PW(p) with

P =
⎛⎝0 0 1

1 0 0
0 1 0

⎞⎠ ; W(p) = diag(eipd2 , eipd4 , 1), (4.23)

where da is the distance between the two vertices, measured on edges a = 2, 4. It leads to

�(p) =
⎛⎝ s22(−p) e2ipd2 s23(−p) eip(d2+d4) s21(−p) eipd2

s32(−p) eip(d2+d4) s33(−p) e2ipd4 s31(−p) eipd4

s12(−p) eipd2 s13(−p) eipd4 s11(−p)

⎞⎠ . (4.24)

To get simple expressions, we suppose that d2 = d4 = d/2, where d is the total length of the
loop. The total scattering matrix takes the form (with t = tan(dp/2)):

Stot(p) = 1

N (p)

(
−4its11(p) (1 + t2)(1 − s11(p)s11(−p))

(1 + t2)(1 − s11(p)s11(−p)) −4its11(−p)

)
N (p) = (1 − it)2 − (1 + it)2s11(−p)s11(p).

(4.25)

It corresponds for the total graph to a boundary condition(
a1(p)

a3(p)

)
= Stot(p)

(
a1(−p)

a3(−p)

)
. (4.26)

The inner modes read

a2(p) = − s21(p)

N (p)
(a1(−p) + eipds11(−p)a3(−p)) (4.27)

a4(p) = − s31(p)

N (p)
(a1(−p) + eipds11(−p)a3(−p)). (4.28)

4.4.1. Expansion for short distances. The general formula (4.25) simplifies to

Stot(p) ∼ 1

N0(p)

( −2ipds11(p) 1 − s11(p)s11(−p)

1 − s11(p)s11(−p) −2ipds11(−p)

)

N0(p) =
(

1 − i
dp

2

)2

−
(

1 + i
dp

2

)2

s11(−p)s11(p), (4.29)

where now s11(p) is a scalar function. If one assumes furthermore that s11(p) is a constant
(see section 6), the expansion leads to a total scattering matrix with two simple poles 2i

d
s11±1
s11∓1 .

4.5. Example 3: the tadpole graph

The tadpole is constructed as a special case of the loop, where one of the vertices is fully
transmitting between two edges, and purely reflexive in the third edge (with coefficient 1). In

12
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a1
S(p)

a4

a2

Σ(p)

a3

Figure 6. The tadpole (plus a half-line).

this way, we get a system with a tadpole and a decoupled half-line, as depicted in figure 6.
The local scattering matrices of this graph are not identical: the first one has the general form

S(p) =
⎛⎝s11(p) s12(p) s13(p)

s21(p) s22(p) s23(p)

s31(p) s32(p) s33(p)

⎞⎠ =
(

S11(p) S12(p)

S21(p) S22(p)

)
(4.30)

while the one associated with the purely reflexive vertex reads

�(p) =
⎛⎝ 0 eip(d2+d4) 0

eip(d2+d4) 0 0
0 0 1

⎞⎠ =
(

�11(p) �12(p)

�21(p) �22(p)

)
, (4.31)

where d2 and d4 are the distances between the two vertices, measured on edges 2 and 4
respectively, so that the length of the loop in the tadpole is � = d2 + d4.

From formulae (4.7)–(4.9), we get

Stot(p) =
(

R(p) 0
0 1

)
R(p) = s11(p) +

eip�

N(p)
(R0(p) + eip�R1(p))

R0(p) = s12(p)s31(p) + s13(p)s21(p) (4.32)

R1(p) = s12(p)(s33(p)s21(p) − s23(p)s31(p)) + s13(p)(s22(p)s31(p) − s32(p)s21(p))

N(p) = (1 − eip�s23(p))(1 − eip�s32(p)) − e2ip�s22(p)s33(p).

The modes in between the two vertices are reconstructed from those outside:(
a2(p)

a4(p)

)
= D̃(p)−1S21(p)a1(−p)

=
(

s21(p) + (s22(p)s31(p) − s32(p)s21(p)) eip�

s31(p) + (s33(p)s21(p) − s23(p)s31(p)) eip�

)
a1(−p)

N(p)
. (4.33)

As expected, the mode a3(p) on the purely reflexive half-line decouples, and the mode(s) on
the loop of the tadpole depends solely on a1(p), the mode on the outer line of the tadpole.
This mode obeys a reflection boundary condition.

Again, one can perform an approximation for small distances: we will present it in
section 6 for particular examples that apply to the calculation of the conductance on graphs.

5. General gluing of more than two vertices

The construction is done by recursion: one first glues two vertices using the results of the
previous section to get an effective vertex corresponding to this gluing. Then, one glues this
effective vertex to a third one. The result is the gluing of the three vertices that we can glue
to a fourth one, and so on. The quantum field follows the same rule, and, at the end, we get

13
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a1
S [1](p)

a2

a4 a6

S [3](p)

a5

S [2](p)
a3

Figure 7. The triangle.

the field for the total graph in terms of the generators
{
aa(p), a

†
a(p)

}
of the external edges a

solely. It obeys relations (2.15) on external edges.
The total scattering matrix of a general graph is thus obtained through a recursive use of

the formulae of section 4. If we denote by S[j ](p), j = 1, . . . , N + 1, the local S-matrices of
the N + 1 vertices under consideration, and by S[j ...k](p), 1 � j < k � N + 1, the S-matrix
resulting from the gluing of the vertices j to k, we get the recursion formula,

S
[1...N+1]
tot (p) =

(
S

[1...N+1]
tot (p)11 S

[1...N+1]
tot (p)12

S
[1...N+1]
tot (p)21 S

[1...N+1]
tot (p)22

)
(5.1)

S
[1...N+1]
tot (p)11 = S̃

[1...N]
11 (p) + S̃

[1...N]
12 (p)D(p)−1S

[N+1]
11 (p)̃S

[1...N]
21 (p) (5.2)

S
[1...N+1]
tot (p)12 = S̃

[1...N]
12 (p)D(p)−1S

[N+1]
12 (p) (5.3)

S
[1...N+1]
tot (p)21 = S

[N+1]
21 (p)D̃(p)−1S̃

[1...N]
21 (p) (5.4)

S
[1...N+1]
tot (p)22 = S

[N+1]
22 (p) + S

[N+1]
21 (p)D̃(p)−1S̃

[1...N]
22 (p)S

[N+1]
12 (p) (5.5)

D(p) = I − S
[N+1]
11 (p)̃S

[1...N]
22 (p); D̃(p) = I − S̃

[1...N]
22 (p)S

[N+1]
11 (p), (5.6)

where D(p) and D̃(p) are supposed to be invertible. S̃[1...N](p) is deduced from the scattering
matrix S[1...N](p) obtained from the previous step through a reordering of the rows and columns
such that the modes ‘glued’ in the step appear at the right place (see section 5.1). Of course,
the decomposition of the S-matrices into submatrices S11, S12, S21 and S22 and the size of these
submatrices depend on the number of edges that are glued between two vertices.

5.1. Example 4: star-triangle relation

We consider a graph constituted with N = 3 identical vertices possessing three edges each,
coupled as in figure 7. The local boundary conditions are given by⎛⎝a1(p)

a4(p)

a2(p)

⎞⎠ = S[1](p)

⎛⎝a1(−p)

a4(−p)

a2(−p)

⎞⎠ ;
⎛⎝a2(−p)

a3(p)

a6(p)

⎞⎠ = S[2](p)

⎛⎝ a2(p)

a3(−p)

a6(−p)

⎞⎠
(5.7)⎛⎝a4(−p)

a6(−p)

a5(p)

⎞⎠ = S[3](p)

⎛⎝ a4(p)

a6(p)

a5(−p)

⎞⎠ .
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We first construct S[12](p) as the gluing of S[1](p) and S[2](p). Since the vertices are
chosen identical, we have

S[2](p) = W2(p)P2S
[1](−p)P −1

2 W2(p) =

⎛⎜⎝s33(−p) e2ipd s31(−p) eipd s32(−p) eipd

s13(−p) eipd s11(−p) s12(−p)

s23(−p) eipd s21(−p) s22(−p)

⎞⎟⎠ .

(5.8)

During this first gluing, the mode a2(p) is the only inner mode. Modes a4(p) and a6(p),
which are inner modes of the full graph, are considered as outer modes for a while. We can
apply the results of section 3.2 for the tree graph to get S[12](p): it is in fact of form (4.12),
where S11(p) is the 2 × 2 upper left submatrix of S[1](p).

The inner mode a2(p) is constructed from the ‘outer’ modes aa(p), a = 1, 3, 4, 6:

a2(p) = 1

1 − e2ipds33(p)s33(−p)
{s31(p)a1(−p) + s32(p)a4(−p)

+ eipds33(p)(s31(−p)a3(−p) + s32(−p)a6(−p))}. (5.9)

These ‘outer’ modes obey the boundary condition⎛⎜⎜⎝
a1(p)

a4(p)

a3(p)

a6(p)

⎞⎟⎟⎠ = S[12](p)

⎛⎜⎜⎝
a1(−p)

a4(−p)

a3(−p)

a6(−p)

⎞⎟⎟⎠ . (5.10)

We now turn to the second stage of the gluing: we glue S[12](p) with S[3](p). Sticking to
the identical vertices case, we take S[3](p) to be

S[3](p) = W3(p)P3S
[1](p)P −1

3 W3(p) =
⎛⎝s11(p) e2ipd s13(p) e2ipd s12(p) eipd

s31(p) e2ipd s33(p) e2ipd s32(p) eipd

s21(p) eipd s23(p) eipd s22(p)

⎞⎠ , (5.11)

so that we have a local boundary condition as in (5.7). We have chosen distance d to be the
same on each edge, but clearly nothing changes in the construction if distance d12 between
vertices 1 and 2 (appearing at the first stage) is different from distances d13 and d23 (appearing
at the second stage). To do the gluing, we have also to reformulate the boundary condition
(5.10) in the following way:⎛⎜⎜⎝

a1(p)

a3(p)

a4(p)

a6(p)

⎞⎟⎟⎠ = S̃[12](p)

⎛⎜⎜⎝
a1(−p)

a3(−p)

a4(−p)

a6(−p)

⎞⎟⎟⎠ . (5.12)

The new S̃[12](p) is deduced from the original S[12](p) through the reordering:

S̃[12](p) = P12S
[12](p)P −1

12 with P12 =

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠ . (5.13)

Then, one just uses formulae (4.7) with S̃[12](p) playing the role of S(p), and S[3](p) the
role of �(p). In this way, we get a scattering matrix Stot(p) for a ‘global’ vertex with three
edges, equivalent from ‘outside’ to the three original vertices: this is the star-triangle relation.
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Indeed, the boundary condition for outer modes reads⎛⎝a1(p)

a3(p)

a5(p)

⎞⎠ = Stot(p)

⎛⎝a1(−p)

a3(−p)

a5(−p)

⎞⎠ (5.14)

and inner modes a4(p) and a6(p) are obtained through relation (4.9) with

A2(p) =
(

a4(p)

a6(p)

)
; A1(p) =

(
a1(p)

a3(p)

)
; A3(p) = a5(p). (5.15)

The complete expression for inner mode a2(p) is obtained using (5.9) and the expressions
for a4(p) and a6(p). However, as the general formulae are rather complicated, we prefer
not to write them explicitly. A complete example of the triangle scattering matrix is given in
section 6.4 for special (constant) local scattering matrices.

6. Scale invariant matrices and Kirchhoff’s rule

We focus on the case of identical vertices and apply the formalism to scale invariant matrices.
Since we will deal with the examples treated in previous sections, which are constructed from
local 3 × 3 scattering matrices, we focus on scale invariant matrices of this size. They have
the form

Sα = 1

1 + α2
1 + α2

2

⎛⎝1 − α2
1 + α2

2 −2α1α2 −2α1

−2α1α2 1 + α2
1 − α2

2 −2α2

−2α1 −2α2 α2
1 + α2

2 − 1

⎞⎠ . (6.1)

We will see in the following section how to deduce the conductance Gab between edges a and
b of a quantum wire from the scattering matrix of this wire. For a star graph and a Luttinger
liquid model, the conductance obeys Kirchhoff’s rule

n∑
a=1

Gab = 0, (6.2)

if the scattering matrix obeys [9]
n∑

a=1

Sab = 1. (6.3)

We will loosely call this relation Kirchhoff’s rule (for scattering matrices). For a general
quantum wire, one may impose Kirchhoff’s rule for scattering matrices locally, i.e. on each
vertex of the wire, or globally, i.e. on the total scattering matrix. To get a scale invariant matrix
(6.1) obeying Kirchhoff’s rule, one needs to impose the constraint 1 + α1 + α2 = 0.

As already mentioned, we now apply the results obtained for the examples 1, 2, 3 and 4
treated in previous sections to cases where the local scattering matrices have the form (6.1).

6.1. Example 1: the tree graph

For the tree graph (see section 3.2) built on local scale invariant matrices, the total scattering
matrix (3.23) takes the symmetric form:

Stot(p) = 1

N (p)

(
S11(p) S12(p)

S12(p) S11(p)

)
(6.4)

N (p) = (
1 + α2

1 + α2
2

)2 − (1 − α2
1 − α2

2)
2 e2ipd (6.5)
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S11(p) = (
1 + α2

1 + α2
2

) (
1 − α2

1 + α2
2 −2α1α2

−2α1α2 1 + α2
1 − α2

2

)

+ e2ipd
(
α2

1 + α2
2 − 1

) (
1 + α2

1 − α2
2 2α1α2

2α1α2 1 − α2
1 + α2

2

)
(6.6)

S12(p) = 4 eipd

(
α2

1 α1α2

α1α2 α2
2

)
. (6.7)

The inner mode is expressed as

a3(p) = −2

N (p)

{(
α2

1 + α2
2 + 1

)
(α1a1(−p) + α2a2(−p))

+ (α2
1 + α2

2 − 1) eipd(α1a4(−p) + α2a5(−p))
}
, (6.8)

where, for the edges, we have used the numbering given in figure 3.
When one considers the particular case α1 = α2 = ±1, one recovers the scattering matrix

computed in example (IV.4) of [6].

6.1.1. Approximation for short distances. We first rewrite the scattering matrix as

Stot(p) = 4

N(p)

(
(1 − t2)A0 + itA1 B

B (1 − t2)A0 + itA1

)
(6.9)

N(p) = (μ2 − 1)t2 − 2i(1 + μ2)t + 1 − μ2 with μ = 1 − α2
1 − α2

2

1 + α2
1 + α2

2

(6.10)

A0 = 1(
1 + α2

1 + α2
2

)2

(
α2

2 −α1α2

−α1α2 α2
1

)
(6.11)

A1 = 1(
1 + α2

1 + α2
2

)2

(
α4

1 − α4
2 − 1 α1α2(α

2
1 + α2

2)

α1α2(α
2
1 + α2

2) α4
2 − α4

1 − 1

)
(6.12)

B = 1(
1 + α2

1 + α2
2

)2

(
α2

1 α1α2

α1α2 α2
2

)
, (6.13)

where t = tan
(

dp

2

)
. Taking d = 0, we get a new 4 × 4 scattering matrix

S(0) = 4

1 − μ2

(
A0 B

B A0

)
= 1

α2
1 + α2

2

⎛⎜⎜⎝
α2

2 −α1α2 α2
1 α1α2

−α1α2 α2
1 α1α2 α2

2

α2
1 α1α2 α2

2 −α1α2

α1α2 α2
2 −α1α2 α2

1

⎞⎟⎟⎠ . (6.14)

Remark that this matrix obeys Kirchhoff’s rule, whatever the values of α1 and α2 are, even
when the local scattering matrices do not. For2 α2 = εα1, with ε = ±1, we get simpler
matrices (still obeying Kirchhoff’s rule)

S(0) = 1

2

⎛⎜⎜⎝
1 −ε 1 ε

−ε 1 ε 1
1 ε 1 −ε

ε 1 −ε 1

⎞⎟⎟⎠ with ε = ±1. (6.15)

2 Note that if one also imposes Kirchhoff’s rule on local vertices, one needs to take ε = +1.
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These matrices can be compared with the two matrices introduced in [14] for the modelization
of a condensed matter experiment proposal:

S
(0)
ch = 1

2

⎛⎜⎜⎝
ε 1 −ε 1
1 ε 1 −ε

−ε 1 ε 1
1 −ε 1 ε

⎞⎟⎟⎠ with ε = ±1. (6.16)

Indeed, one has

S
(0)
ch = US(0) where U =

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠ . (6.17)

Since US(0)U = S(0), the unitarity relations are preserved by this transformation, and indeed
S(0) and S

(0)
ch are unitary.

The ‘first-order’ correction (in terms of d, the distance between the two vertices) can be
computed as in section 3, setting t ∼ dp

2 in the above matrices. We focus on the case α2 = εα1

and set β = α2
1 . Multiplying by U, we get a first correction (in d) for the matrices given

in [14]:

S(1)(p) ∼ −1/2

(pd + 4iβ)(pd + i/β)

{
8S

(0)
ch + i

dp

β
S

(1)
ch − (dp)2 S

(2)
ch

}
, (6.18)

S
(1)
ch =

⎛⎜⎜⎝
0 0 4εβ2 −1
0 0 −1 4εβ2

4εβ2 −1 0 0
−1 4εβ2 0 0

⎞⎟⎟⎠ ; S
(2)
ch =

⎛⎜⎜⎝
0 0 −ε 1
0 0 1 −ε

−ε 1 0 0
1 −ε 0 0

⎞⎟⎟⎠ . (6.19)

6.2. Example 2: the loop

The loop graph has been treated in section 4.4. Using the form (6.1), the total scattering
matrix (4.25) rewrites

Stot(p) = exp(idp)

N (p)

(
−2iμ sin(dp) 1 − μ2

1 − μ2 −2iμ sin(dp)

)
with μ = 1 − α2

1 + α2
2

1 + α2
1 + α2

2

N (p) = 1 − (μ exp(idp))2. (6.20)

For scattering matrices obeying locally Kirchhoff’s rule, one has μ = 1+α1

1+α1+α2
1
.

In the particular case μ = − 1
3 (i.e., α1 = −2 when Kirchhoff’s rule is obeyed locally),

one recovers the S matrix found in example 3.2 of [4], with identification p ≡ √
E.

The inner modes take the form

a2(p) = γα2

N (p)
(e−ipda1(−p) + μa3(−p))

a4(p) = γ

N (p)
(e−ipda1(−p) + μa3(−p))

γ = 2α1

1 + α2
1 + α2

2

. (6.21)
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6.2.1. Expansion in terms of the loop length. We rewrite the scattering matrix in terms of
t = tan(dp/2):

Stot(p) =
(

R(p) T (p)

T (p) R(p)

)
with

⎧⎪⎪⎨⎪⎪⎩
R(p) = 4iμt

(1 − μ2)t2 + 2i(1 + μ2)t − 1 + μ2

T (p) = (μ2 − 1)(1 + t2)

(1 − μ2)t2 + 2i(1 + μ2)t − 1 + μ2

.

(6.22)

When d → 0, we get an approximation of the scattering matrix setting t ∼ dp/2. One
recognizes in the approximation the scattering matrix for a point-like impurity on the line.
The reflection and transmission coefficients defining this impurity are given by local parameters
α1, α2, and by distance d (or equivalently by the surface d2 of the loop). Correction to this
approximation, induced by the surface of the loop, is given by the full expression (6.20).

6.3. Example 3: the tadpole

We apply the result for the tadpole graph (see section 4.5). Starting from the general form
(6.1) and using the expression (4.32), this leads to the tadpole S matrix

Stot(p) =
(

R(p) 0
0 1

)
with R(p) =

(
1 + α2

1 + α2
2

)
e2idp + 4α2 eidp + 1 − α2

1 + α2
2

(1 − α2
1 + α2

2) e2idp + 4α2 eidp + 1 + α2
1 + α2

2

.

(6.23)

We get a system with a half-line with reflection coefficient 1 decoupled from another half-line,
with reflection coefficient R(p).

In the particular case of α1 = ±2 and α2 = 1 one recovers the S matrix given in example
4.3 of [4], again with identification p ≡ √

E.
The modes inside the loop read

a2(p) = −2α1(α2 + eipd)

(1 − α2
1 + α2

2) e2idp + 4α2 eidp + 1 + α2
1 + α2

2

a1(−p) (6.24)

a4(p) = −2α1(1 + α2 eipd)

(1 − α2
1 + α2

2) e2idp + 4α2 eidp + 1 + α2
1 + α2

2

a1(−p). (6.25)

6.3.1. Expansion in terms of the loop length. We rewrite the reflection coefficient (6.23) as

R(p) = (1 − α2)
2t2 − 2iα2

1t − (1 + α2)
2

(1 − α2)2t2 + 2iα2
1t − (1 + α2)2

with t = tan(pd/2) (6.26)

and perform the short distance approximation setting t ∼ dp/2.

6.4. Example 4: the triangle

We present the calculation of the total scattering matrix for the triangle (as has been explained
in section 5.1), up to the end, for scale invariant local scattering matrices (6.1).

To simplify the presentation, we consider three identical vertices with local scattering
matrix (6.1) with α1 = α2 = 1,

S0 = −1

3

⎛⎝−1 2 2
2 −1 2
2 2 −1

⎞⎠ ,

and take the same length d for the three connecting lines.
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At the first step of the gluing, we get a tree-graph matrix of type (6.7),

S[12](p) = 1

9 − e2idp

⎛⎜⎜⎝
e2idp + 3 2(e2idp − 3) 4 eidp 4 eidp

2(e2idp − 3) e2idp + 3 4 eidp 4 eidp

4 eidp 4 eidp e2idp + 3 2(e2idp − 3)

4 eidp 4 eidp 2(e2idp − 3) e2idp + 3

⎞⎟⎟⎠
that, after rotation by P12, we glue to

S[3](p) = −1

3

⎛⎝−e2idp 2 e2idp 2 eidp

2 e2idp −e2idp 2 eidp

2 eidp 2 eidp −1

⎞⎠
using the general formulae (4.7). We get

Stot(p) = 3 eipd + 1

eipd + 3
I3 +

4(eipd − 1) eipd

(eipd + 3)(e2ipd − 2 eipd + 3)

⎛⎝ 2 −1 −1
−1 2 −1
−1 −1 2

⎞⎠ . (6.27)

Inner modes a4(p) and a6(p) are obtained using formulae (4.9):

a4(p) = 2

e2ipd − 2 eipd + 3

{
eipd − 3

eipd + 3
a1(−p) +

2eipd

eipd + 3
a3(−p) − eipd(eipd + 1)

eipd + 3
a5(−p)

}
a6(p) = 2

e2ipd − 2 eipd + 3

{
2 eipd

eipd + 3
a1(−p) +

eipd − 3

eipd + 3
a3(−p) − eipd(eipd + 1)

eipd + 3
a5(−p)

}
.

Mode a2(p) is obtained according to the calculation explained in section 5.1:

a2(p) = 2

e2idp − 9
{3a1(−p) + 3a4(−p) + eipda6(p) + eipda3(−p)}.

6.4.1. Expansion in terms of the distance. An equivalent form of (6.27) is given by

Stot(p) = − t − 2i

t + 2i
I3 +

2t(t2 + 1)

(t + 2i)(3t2 + 2it − 1)

⎛⎝ 2 −1 −1
−1 2 −1
−1 −1 2

⎞⎠ , (6.28)

where t = tan(dp/2), with the short distance expansion given by t ∼ dp/2.
One can compare this matrix with the symmetric scattering matrix introduced in [13]:

R = 1

3

⎛⎝−1 2 2
2 −1 2
2 2 −1

⎞⎠ . (6.29)

To get this matrix at d = 0, we multiply Stot(p) by R. It is possible because we have R2 = I

and [Stot(p),R] = 0, so that RStot(p) is still unitary. Then, the short distance approximation
leads to

RStot(p) ∼ − t − 2i

t + 2i
R +

2t(t2 + 1)

(t + 2i)(3t2 + 2it − 1)

⎛⎝−2 1 1
1 −2 1
1 1 −2

⎞⎠ , t ∼ dp

2
, (6.30)

which can be viewed as a first correction to the scattering matrix R.
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7. Conductance

7.1. General settings

The conductance of a quantum wire is obtained through the linear response of the current
jμ,a(x, t) to a classical external potential Aμ,a(x, t) minimally coupled to a fermionic field
ψb(x, t) on the quantum wire. This has been treated in [10] for the Tomonaga–Luttinger (TL)
model in the case of star graphs; see also [7] for a general treatment of a self-adjoint magnetic
Laplacian on graphs. When considering a general quantum wire, we will restrict ourselves to
the problem of computing the conductance within the TL model and between external edges
only. Via bosonization, all of the problem can be rewritten in terms of the bosonic field φa(x, t)

given in (2.14); see [10] for details. For instance, the local gauge transformations read

Aμ,a(x, t) → Aμ,a(x, t) − ∂μ�a(x, t), μ = x, t; a = 1, . . . , n (7.1)

φa(x, t) → φa(x, t) +
1

σ
√

π
�a(x, t) (7.2)

and the corresponding invariant current reads

jμ,a(x, t) = √
π∂μφa(x, t) +

1

σ
Aμ,a(x, t), (7.3)

with possibly some additional terms corresponding to bound states [11]. Let us stress that
this current is just the bosonized version of a fermionic (relativistic) current ψ(x, t)γμψ(x, t).
Then, the linear response theory leads to

〈jx,a(x, t)〉Aμ
= 1

σ
Ax,a(x, t) +

i

σ

n∑
b=1

∫ t

−∞
dτ

∫ ∞

0
dyAx,b(y, τ )〉[∂xφb(y, τ ), ∂xφa(x, t)]〉.

Considering a uniform electric field switched on at t = t0, in the Weyl gauge,

Ea(t) = ∂tAx,a(t) with Ax,a(t) = 0 if t < t0 (7.4)

At,a = 0,∀t, a = 1, . . . , n, (7.5)

and supposing that the scattering matrix is symmetric and admits simple non-real poles only,
one can derive the conductance [11]

〈jx,a(x, t)〉Aμ
=

n∑
b=1

∫ ∞

−∞

dω

2π
Âx,b(ω)Gab(ω, t − t0) e−iωt , (7.6)

Gab(ω, t) = G0

{
δab − Sab(ω) −

∑
η∈P

ei(ω−iη)t

ω − iη
Tab(η)

}
. (7.7)

We have also introduced P , the set of poles of the scattering matrix and

Tab(η) = lim
p→iη

(p − iη)Sab(p). (7.8)

G0 is the conductance for the infinite line. The conductance depends on the time t0 of the
switch-on of the electric field, but also (due to the presence of poles in the scattering matrix)
on its frequency ω.

Short distance approximation for the conductance. The formula (7.7) can be applied to any
of the scattering matrices computed in the previous sections, in particular to those deduced
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in the short distance approximation, where the number of poles is finite. Moreover, when
performing this short distance approximation, and since the pole content has already been
(partially) kept in the Tab matrix, one can take for the total scattering matrix in (7.7) its value
for d = 0. Since in our examples the local scattering matrices are constant, this is equivalent
to taking p = 0 in S, so that we get for the conductance the approximated form

G
approx
ab (ω, t) = G0

{
δab − Sab(0) −

∑
η∈P0

ei(ω−iη)t

ω − iη
Tab(η)

}
, (7.9)

where P0 is the set of poles appearing in the approximated scattering matrix of the graph under
consideration. An obvious refinement of this approximation is to take

Grefin
ab (ω, t) = G0

{
δab − S

approx
ab (ω) −

∑
η∈P0

ei(ω−iη)t

ω − iη
Tab(η)

}
, (7.10)

where S
approx
ab (ω) is the short distance approximation of the scattering matrix.

Some examples of such calculations are done in the following section.

7.2. Examples

We apply the above formalism to the examples dealt with in section 6. Except for one particular
case, we will consider the scattering matrix within the short distance approximation, as has
been presented in section 4.3. In the case of the tadpole, we perform the exact calculation and
show that the short distance approximation is in accordance with the exact result, justifying in
this way the approximation.

7.2.1. Tree graph. We start with matrix (6.18), which possesses two simple poles

iη1 = −i

d
4β and iη2 = i

dβ
. (7.11)

We recall that β = α2
1. One gets, using notations (6.19),

T1 = T (η1) = −2iβ

4β2 − 1

{
2S

(0)
ch + S

(1)
ch + 4β2S

(2)
ch

}
(7.12)

T2 = T (η2) = iβ

4β2 − 1

{
4S

(0)
ch +

1

2
S

(1)
ch +

1

2β2
S

(2)
ch

}
. (7.13)

Starting from the formula (7.9), it leads to a conductance

G(ω, t) = G0

{
1

2

(
A −A

−A A

)
− ei(ω−iη1)t

ω − iη1
T1 − ei(ω−iη2)t

ω − iη2
T2

}
, (7.14)

where we have introduced the 2 × 2 matrix

A =
(

1 ε

ε 1

)
. (7.15)

7.2.2. Loop. We consider the loop scattering matrix (6.22). It possesses two simple poles

iη1 = 2i(μ − 1)

d(μ + 1)
= −2iα2

1(
1 + α2

2

)
d

and iη2 = 2i(μ + 1)

d(μ − 1)
= −2i

(
1 + α2

2

)
α2

1d
. (7.16)
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They lead to the two matrices

T1 = T (η1) = i
1 + μ

1 − μ

(
1 −1

−1 1

)
and T2 = T (η2) = −i

1 − μ

1 + μ

(
1 1
1 1

)
. (7.17)

Then, the conductance (7.9) is rewritten as

G(ω, t) = G0

{(
1 −1

−1 1

)
− ei(ω−iη1)t

ω − iη1
T1 − ei(ω−iη2)t

ω − iη2
T2

}
. (7.18)

7.2.3. Tadpole. To simplify the presentation, we consider the case α2 = 1, but the same sort
of calculation can be done for the general case.

Exact calculation. The expression (6.23) for α2 = 1 simplifies to

R(p) = 2 + iα2
1t

2 − iα2
1t

. (7.19)

The poles of R(p) are given by

tan

(
dp

2

)
= −2i

α2
1

⇔ p = iηk = iη0 +
2kπ

d
,

k ∈ Z with η0 = − 2

d
arctanh

(
2

α2
1

)
,

which leads to

Tk = T (ηk) = 8i

d

α2
1

α4
1 − 4

, ∀k ∈ Z. (7.20)

Hence, we get

G(ω, t) = G0

{
1 − R(ω) − 8i

d

α2
1

α4
1 − 4

∑
k∈Z

ei(ω−iηk)t

ω − iηk

}
. (7.21)

The sum can be computed for real parameter α1, and one obtains∑
k∈Z

1

ω − iηk

ei(ω−iηk)t = −id ein0(t)d(ω−iη0)

1 − eid(ω−iη0)
with n0(t) =

[
t

d

]
, (7.22)

where [·] denotes the integer part. This leads to

G(ω, t) = G0

{
1 − 2 + iα2

1 tan
(

ωd
2

)
2 − iα2

1 tan
(

ωd
2

) − 8α2
1

α4
1 − 4

ein0(t)d(ω−iη0)

1 − eid(ω−iη0)

}
. (7.23)

Short distance approximation. If one performs the same calculation with approximation
t ∼ pd/2, we get a single simple pole iη′ = −4i/dα2

1 that leads to

Gapprox(ω, t) = G0

{
1 − 2 + iα2

1
ωd
2

2 − iα2
1

ωd
2

+
8i

dα2
1

ei(ω−iη′)t

ω − iη′

}
. (7.24)

To compare this latter expression with the exact result, we first note that

η0 = − 2

d
arctanh

(
2

α2
1

)
∼ − 4

dα2
1

= η′ for α2
1 � 2. (7.25)
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Taking this regime for parameter α1, we perform an expansion in d of (7.23), remarking that
n0(t)d ∼ t when d → 0,

G(ω, t) ∼ G0

{
1 − 2 + iα2

1
ωd
2

2 − iα2
1

ωd
2

+
8

α2
1

ei(ω−iη′)t

(−id)(ω − iη′)

}
, (7.26)

which is exactly the expression of Gapprox(ω, t). Thus, the short distance approximation gives
a correct estimate of the conductance for this parameter range.

7.2.4. Triangle. The matrix (6.30) possesses three simple poles

iη0 = −4i

d
; iη± = −2i ± 2

√
2

3d
, (7.27)

leading to

T (η0) = 8i

3d

⎛⎝1 1 1
1 1 1
1 1 1

⎞⎠ and T (η±) = − 2

9d
(2i ±

√
2)

⎛⎝ 2 −1 −1
−1 2 −1
−1 −1 2

⎞⎠ .

(7.28)

The conductance takes the form

G(ω, t) = G0

{
I3 − R − ei(ω−iη0)t

ω − iη0
T (η0) − ei(ω−iη+)t

ω − iη+
T (η+) − ei(ω−iη−)t

ω − iη−
T (η−)

}
. (7.29)

When the distance d → 0, the ω dependent part of the conductance goes to zero, and one
recovers the conductance computed in [14]. For non-vanishing values of d, we get ω dependent
corrections to this conductance.
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Appendix. Proofs

A.1. Compatibility relation

We start with the relations at each vertex

A1(p) = S11(p)A1(−p) + S12(p)A2(−p) (A.1)

A2(p) = S21(p)A1(−p) + S22(p)A2(−p) (A.2)

A2(−p) = �11(p)A2(p) + �12(p)A3(−p) (A.3)

A3(p) = �21(p)A2(p) + �22(p)A3(−p), (A.4)

where we used the notations of section 4.1. Equations (A.2) and (A.3) allow us to express
A2(p) in terms of A1(p) and A3(p) in two different ways:

A2(p) = D̃(p)−1(S21(p)A1(−p) + S22(p)�12(p)A3(−p)) (A.5)

A2(−p) = D(p)−1(�12(p)A3(−p) + �11(p)S21(p)A1(−p)) (A.6)
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with D̃(p) = I − S22(p)�11(p) and D(p) = I − �11(p)S22(p). (A.7)

Plugging (A.5) into (A.4) and (A.6) into (A.1) leads to relations (4.6)–(4.7). (A.5) can be
viewed as the determination of A2(p) in terms of A1(p) and A3(p). It remains a compatibility
relation,

D̃(p)−1(S21(p)A1(−p) + S22(p)�12(p)A3(−p))

= D(−p)−1(�12(−p)A3(p) + �11(−p)S21(−p)A1(p)), (A.8)

which rewrites, using again relations (4.6)–(4.7),

D(−p)D̃(p)−1(S21(p)A1(−p) + S22(p)�12(p)A3(−p)) = (�12(−p)�21(p)D̃(p)−1

−�11(−p)S22(−p) + �11(−p)S21(−p)S12(p)D(p)−1

×�11(−p))S21(p)A1(−p) + (�11(−p)S21(−p)S12(p)D(p)−1 − �11(−p)

+ �12(−p)�21(p)D̃(p)−1S22(p))�12(p)A3(−p).

Instead of proving this relation, we prove the two following relations that obviously imply the
compatibility relation:

D(−p)D̃(p)−1 = �12(−p)�21(p)D̃(p)−1

+ �11(−p)S21(−p)S12(p)D(p)−1�11(p) − �11(−p)S22(−p) (A.9)

D(−p)D̃(p)−1S22(p) = �11(−p)S21(−p)S12(p)D(p)−1

+ �12(−p)�21(p)D̃(p)−1S22(p) − �11(−p). (A.10)

We start by proving relation (A.9). Multiplying on the right by D̃(p) and using the consistency
relation (2.8) for S(p) and �(p), it can be rewritten as

D(−p) = I − �11(−p)�11(p) + �11(−p)(I − S22(−p)S22(p))D(p)−1�11(p)D̃(p)

−�11(−p)S22(−p)(I − S22(p)�11(p)) (A.11)

that is indeed an equality. Relation (A.10) is equivalent to relation (A.9) multiplied from the
right by S22(p).

A.2. Consistency and Hermitian analycity relations

We prove that the scattering matrix (4.7) obeys the consistency and Hermitian analycity
relations (2.8) and (2.9) as soon as the local scattering matrices do. The proof relies on the
relations (proven by the direct calculation):

�11(p)D̃(p)−1 = D(p)−1�11(p) and D̃(p)−1S22(p) = S22(p)D(p)−1 (A.12)

(D̃(p))† = D(−p) and (D(p))† = D̃(−p). (A.13)

Thanks to these relations, it is easy to show that Stot(p) is Hermitian analytical. For instance
one has

(Stot(p))
†
11 = S11(p)† + S21(p)†�11(p)†(D(p)−1)†S12(p)†

= S11(−p) + S21(−p)�11(−p)D̃(−p)−1S12(−p) = (Stot(−p))11.
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The proof of the consistency relation requires more calculation. Considering the 11 component
and using consistency relations for S(p) and �(p), one can rewrite it as

(Stot(p)Stot(−p))11 = S11(p)S11(−p) + S12(p)D(p)−1{· · ·}S21(−p)

{· · ·} = D(p) + [· · ·]D̃(−p)−1

(A.14)
[ · · ·] = (�11(p) − S22(−p))D(−p)−1(· · ·)
(· · ·) = −D(−p)�11(−p) + �11(−p)D̃(−p) = 0,

where in the last step we used (A.12).
The other relations are proven along the same lines.
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